Chemist and Materials Scientist Careers
Significant Points
- A bachelor's degree in chemistry or a related discipline is the minimum educational requirement; however, many research jobs require a master's degree or a Ph.D.
- Job growth will occur in professional, scientific, and technical services firms as manufacturing companies continue to outsource their research and development and testing operations to these smaller, specialized firms.
- New chemists at all levels may experience competition for jobs, particularly in declining chemical manufacturing industries; graduates with a master's degree, and particularly those with a Ph.D., will enjoy better opportunities at larger pharmaceutical and biotechnology firms.
Nature of the Work
Everything in the environment, whether naturally occurring or of human design, is composed of chemicals. Chemists and materials scientists search for new knowledge about chemicals and use it to improve life. Chemical research has led to the discovery and development of new and improved synthetic fibers, paints, adhesives, drugs, cosmetics, electronic components, lubricants, and thousands of other products. Chemists and materials scientists also develop processes such as improved oil refining and petrochemical processing that save energy and reduce pollution. Applications of materials science include studies of superconducting materials, graphite materials, integrated-circuit chips, and fuel cells. Research on the chemistry of living things spurs advances in medicine, agriculture, food processing, and other fields.
Many chemists and materials scientists work in research and development (R In basic research, they investigate the properties, composition, and structure of matter and the laws that govern the combination of elements and reactions of substances to each other. In applied R these scientists create new products and processes or improve existing ones, often using knowledge gained from basic research. For example, the development of synthetic rubber and plastics resulted from research on small molecules uniting to form large ones, a process called polymerization. R chemists and materials scientists use computers and a wide variety of sophisticated laboratory instrumentation for modeling, simulation, and experimental analysis.
Developments in technology and the use of computers have allowed chemists and materials scientists to practice new, more efficient techniques, such as combinatorial chemistry. This technique makes and tests large quantities of chemical compounds simultaneously to find those with certain desired properties. Combinatorial chemistry allows chemists to produce thousands of compounds more quickly and less expensively than was formerly possible. In some cases, chemists use virtual libraries of millions of chemicals to find compounds with certain characteristics, allowing them to synthesize only the most promising candidates.
Scientific R in general has become more interdisciplinary in recent years; as a result, many chemists no longer work individually. Instead they will often be part of research teams that include other scientists, such as biologists and physicists; computer specialists; and engineers.
Chemists also work in production and quality control in chemical manufacturing plants. They prepare instructions for plant workers that specify ingredients, mixing times, and temperatures for each stage in the process. They also monitor automated processes to ensure proper product yield and test samples of raw materials or finished products to ensure that these samples meet industry and government standards, including regulations governing pollution. Chemists report and document test results and analyze those results in hopes of improving existing theories or developing new test methods.
Chemists often specialize in a particular branch of the field. Analytical chemists determine the structure, composition, and nature of substances by examining and identifying their various elements or compounds. These chemists are crucial to the pharmaceutical industry because pharmaceutical companies need to know the identity of compounds that they hope to turn into drugs. Furthermore, analytical chemists develop techniques and study the relationships and interactions among the parts of compounds. They also identify the presence and concentration of chemical pollutants in water, soil, and the air.
Organic chemists study the chemistry of the vast number of carbon compounds that make up all living things. They synthesize elements or simple compounds to create new compounds or substances that have different properties and applications. These compounds have in turn been used to develop many commercial products, such as drugs, plastics, and elastomers (elastic substances similar to rubber). Inorganic chemists study compounds consisting mainly of elements other than carbon, such as those in electronic components.
Physical and theoretical chemists study the physical characteristics of atoms and molecules and the theoretical properties of matter; and they investigate how chemical reactions work. Their research may result in new and better energy sources. Macromolecular chemists study the behavior of atoms and molecules. Medicinal chemists study the structural properties of compounds intended for applications to human medicine.
Materials chemists study and develop new materials to improve existing products or make new ones. In fact, virtually all chemists are involved in this quest in one way or another.
The work of materials chemists is similar to, but separate from, the work of materials scientists. Materials scientists tend to have a more interdisciplinary background, as they apply the principles of physics and engineering as well as chemistry to study all aspects of materials. Chemistry, however, plays the primary role in materials science because it provides information about the structure and composition of materials.
Materials scientists study the structures and chemical properties of various materials to develop new products or enhance existing ones. They also determine ways to strengthen or combine materials or develop new materials for use in a variety of products. Materials science encompasses the natural and synthetic materials used in a wide range of products and structures, from airplanes, cars, and bridges to clothing and household goods. Materials scientists often specialize in a specific type of material, such as ceramics or metals.
Work environment. Chemists and materials scientists usually work regular hours in offices and laboratories. R chemists and materials scientists spend much time in laboratories but also work in offices when they do theoretical research or plan, record, and report on their lab research. Although some laboratories are small, others are large enough to incorporate prototype chemical manufacturing facilities and advanced testing equipment. In addition to working in a laboratory, materials scientists also work with engineers and processing specialists in industrial manufacturing facilities. Chemists do some of their work in a chemical plant or outdoors-gathering water samples to test for pollutants, for example. Some chemists are exposed to health or safety hazards when handling certain chemicals, but there is little risk if proper procedures are followed.
Chemists and materials scientists typically work regular hours. A 40-hour workweek is usual, but longer hours are not uncommon. Researchers may be required to work odd hours in laboratories or other locations, depending on the nature of their research.
Training, Other Qualifications, and Advancement
A bachelor's degree in chemistry or a related discipline is the minimum educational requirement; however, many research jobs require a master's degree or, more often, a Ph.D.
Education and training. A bachelor's degree in chemistry, or in a related discipline together with a significant background in chemistry, usually is required for entry-level chemist jobs. Although some materials scientists hold a degree in materials science, these scientists also commonly have a degree in chemistry, physics, or electrical engineering. Most research jobs in chemistry and materials science require a master's degree or, more frequently, a Ph.D.
Many colleges and universities offer degree programs in chemistry. In 2009, the American Chemical Society (ACS) had approved about 650 bachelors, 310 masters, and 200 doctoral degree programs. In addition to these programs, other advanced degree programs in chemistry were offered at several hundred colleges and universities. The number of colleges that offer a degree program in materials science is small but gradually increasing; many engineering schools offer degrees in the joint field of materials science and engineering.
Students planning careers as chemists or materials scientists should take courses in science and mathematics, should like working with their hands to build scientific apparatus and perform laboratory experiments, and should like computer modeling.
In addition to taking required courses in analytical, inorganic, organic, and physical chemistry, undergraduate chemistry majors usually study biological sciences; mathematics; physics; and, increasingly, computer science. Computer courses are essential because employers prefer to hire job applicants who are able to apply computer skills to modeling and simulation tasks and are able to operate computerized laboratory equipment. These abilities are increasingly important as combinatorial chemistry and advanced screening techniques are more widely applied. Courses in statistics are useful because both chemists and materials scientists need the ability to apply basic statistical techniques.
People interested in environmental specialties also should take courses in environmental studies and become familiar with current legislation and regulations. Specific courses should include atmospheric, water, and soil chemistry and energy.
Graduate students studying chemistry commonly specialize in a subfield, such as analytical chemistry or polymer chemistry, depending on their interests and the kind of work they wish to do. For example, those interested in doing drug research in the pharmaceutical industry usually develop a strong background in medicinal or synthetic organic chemistry. However, students normally need not specialize at the undergraduate level. In fact, undergraduates who are broadly trained have more flexibility when searching for jobs than if they have narrowly defined their interests. Most employers provide new graduates with additional training or education.
In government or industry, beginning chemists with a bachelor's degree work in quality control, perform analytical testing, or assist senior chemists in R laboratories. Many employers prefer to hire chemists and materials scientists with a Ph.D., or at least a master's degree, to lead basic and applied research. Within materials science, a broad background in various sciences is preferred. This broad base may be obtained through degrees in physics, engineering, or chemistry. Although many companies prefer hiring Ph.D.s, some may employ materials scientists with a bachelor's or master's degree.
Other qualifications. Because R chemists and materials scientists are increasingly expected to work on interdisciplinary teams, some understanding of other disciplines, including business and marketing or economics, is desirable, along with leadership ability and good oral and written communication skills. Interaction among specialists in this field is increasing, especially for specialty chemists in drug development. One type of chemist often relies on the findings of another type of chemist. For example, an organic chemist must understand findings on the identity of compounds prepared by an analytical chemist.
Experience, either in academic laboratories or through internships, fellowships, or work-study programs in industry, also is useful. Some employers of research chemists, particularly in the pharmaceutical industry, prefer to hire individuals with several years of postdoctoral experience.
Perseverance, curiosity, and the ability to concentrate on detail and to work independently are essential.
Advancement. Advancement among chemists and materials scientists usually takes the form of greater independence in their work or larger budgets. Others choose to move into managerial positions and become natural sciences managers. Those who pursue management careers spend more time preparing budgets and schedules and setting research strategy. Chemists or materials scientists who develop new products or processes sometimes form their own companies or join new firms to develop these ideas.
Job Outlook
Job growth is expected to be slower than the average for all occupations. New chemists at all levels may experience competition for jobs, particularly in declining chemical manufacturing industries. Graduates with a master's degree or a Ph.D. will enjoy better opportunities, especially at larger pharmaceutical and biotechnology firms.
Employment change. Employment of chemists and materials scientists is expected to grow by 3 percent over the 2008-18 decade, slower than the average for all occupations. Job growth will occur in professional, scientific, and technical services firms as manufacturing companies continue to outsource their R and testing operations to these smaller, specialized firms. Chemists will see 2 percent growth as increases in biotechnology-related fields will be tempered by declines in other chemical manufacturing. Employment of materials scientists is projected to grow by 12 percent as manufacturers seek to improve the quality of their products by using new materials and manufacturing processes.
Demand for chemists is expected to be driven by biotechnology firms. Biotechnological research, including studies of human genes, continues to offer possibilities for the development of new drugs and products to combat illnesses and diseases that have previously been unresponsive to treatments derived by traditional chemical processes.
The chemical manufacturing industry is expected to employ fewer chemists as companies divest their R operations. To control costs, most chemical companies, including many large pharmaceutical and biotechnology companies, will increasingly turn to scientific R services firms to perform specialized research and other work formerly done by in-house chemists. As a result, these firms will experience healthy job growth. Also, companies are expected to conduct an increasing amount of manufacturing and research in lower-wage countries, further limiting domestic employment growth. Quality control will continue to be an important issue in chemical manufacturing and other industries that use chemicals in their manufacturing processes.
Chemists also will be employed to develop and improve the technologies and processes used to produce chemicals for all purposes and to monitor and measure air and water pollutants to ensure compliance with local, State, and Federal environmental regulations. Environmental research will offer many new opportunities for chemists and materials scientists. To satisfy public concerns and to comply with government regulations, chemical manufacturing industries will continue to invest billions of dollars each year in technology that reduces pollution and cleans up existing waste sites. Research into traditional and alternative energy sources should also lead to employment growth among chemists.
Job prospects. New chemists at all levels may experience competition for jobs, particularly in declining chemical manufacturing industries. Pharmaceutical and biotechnology firms will continue to be a primary source of chemistry jobs, but graduates with a bachelor's degree in chemistry may also find science-related jobs in sales, marketing, and management. Some bachelor's degree holders become chemical technicians or technologists or high school chemistry teachers. In addition, they may qualify for assistant research positions at smaller research organizations.
Graduates with an advanced degree, particularly those with a Ph.D., are expected to enjoy somewhat better opportunities. Larger pharmaceutical and biotechnology firms provide openings for these workers at research laboratories, and many others work in colleges and universities. Furthermore, chemists with an advanced degree will continue to fill most senior research and upper management positions; however, similar to applicants in other occupations, chemist applicants face strong competition for the limited number of upper management jobs.
In addition to job openings resulting from employment growth, some job openings will result from the need to replace chemists and materials scientists who retire or otherwise leave the labor force.
During periods of economic recession, layoffs of chemists may occur-especially in the industrial chemicals industry. Layoffs are less likely in the pharmaceutical industry, where long development cycles generally overshadow short-term economic conditions. The traditional chemical industries, however, provide many raw materials to the automotive manufacturing and construction industries, both of which are vulnerable to temporary slowdowns during recessions.